Creating Better Force Fields on Distributed GPUs with Work Queue

ForceBalance is an open source software tool for creating accurate force fields for molecular mechanics simulation using flexible combinations of reference data from experimental measurements and theoretical calculations. These force fields are used to simulate the dynamics and physical properties of molecules in chemistry and biochemistry.

The Work Queue framework gives ForceBalance the ability to distribute computationally intensive components of a force field optimization calculation in a highly flexible way. For example, each optimization cycle launched by ForceBalance may require running 50 molecular dynamics simulations, each of which may take 10-20 hours on a high end NVIDIA GPU. While GPU computing resources are available, it is rare to find 50 available GPU nodes on any single supercomputer or HPC cluster. With Work Queue, it is possible to distribute the simulations across several HPC clusters, including the Certainty HPC cluster at Stanford, the Keeneland GPU cluster managed by Georgia Tech and Oak Ridge National Laboratories, and the Stampede supercomputer managed by the University of Texas. This makes it possible to run many simulations in parallel and complete the high level optimization in weeks instead of years.

 - Lee-Ping Wang, Stanford University



Enjoy Reading This Article?

Here are some more articles you might like to read next:

  • Scaling SADE (Safety Aware Drone Ecosystem): A Hybrid UAV Simulation System for High-Fidelity Research
  • Wrangling Massive Tasks Graphs with Dynamic Hierarchical Composition
  • TaskVine Insights - Storage Management: Disk Load Shifting
  • Simulating Digital Agriculture in Near Real-Time with xGFabric
  • Undergraduate Researcher Showcases PLEDGE Project at APANAC 2025 in Panama